Adeno-associated Virus (AAV) Serotypes Have Distinctive Interactions with Domains of the Cellular AAV Receptor
نویسندگان
چکیده
Adeno-associated virus (AAV) entry is determined by its interactions with specific surface glycans and proteinaceous receptor(s). Adeno-associated virus receptor (AAVR; also named KIAA0319L) is an essential cellular receptor required for the transduction of vectors derived from multiple AAV serotypes including the evolutionary distant serotypes, AAV2 and AAV5. Here, we further biochemically characterize the AAV-AAVR interaction and define the domains within the ectodomain of AAVR that facilitate this interaction. Using a virus overlay assay, it was previously shown that the major AAV2 binding protein in membrane preparations of human cells corresponds to a glycoprotein with a 150-kDa molecular mass. By establishing a purification procedure, performing further protein separation through two-dimensional electrophoresis and utilizing mass spectrometry, we now show that this glycoprotein is identical to AAVR. While we find that AAVR is N-linked glycosylated, this glycosylation is not a strict requirement for AAV2 binding or functional transduction. Using a combination of genetic complementation with deletion constructs and viral overlay assays with individual domains, we find that AAV2 functionally interacts predominantly with the second Ig-like PKD repeat domain (PKD2) present in the ectodomain of AAVR. By contrast, AAV5 interacts primarily through the first, most membrane distal, PKD domain (PKD1) of AAVR to promote transduction. Furthermore, other AAV serotypes including AAV1 and 8 require a combination of PKD1 and PKD2 for optimal transduction. These results suggest that despite their shared dependence on AAVR as a critical entry receptor, different AAV serotypes have evolved distinctive interactions with the same receptor.IMPORTANCE Over the past decade, AAV vectors have emerged as leading gene delivery tools for therapeutic applications and biomedical research. Yet, fundamental aspects of the AAV life cycle, including how AAV interacts with host cellular factors to facilitate infection are only partly understood. In particular, AAV receptors contribute significantly to AAV vector transduction efficiency and tropism. The recently identified AAV receptor, AAVR, is a key host receptor for multiple serotypes, including the most studied serotype, AAV2. AAVR binds directly to AAV2 particles and is rate-limiting for viral transduction. Defining the AAV-AAVR interface in more detail is important to understand how AAV engages with its cellular receptor, and how the receptor facilitates the entry process. Here, we further define AAV-AAVR interactions, genetically and biochemically, and show that different AAV serotypes have discreet interactions with the Ig-like PKD domains of AAVR. These findings reveal an unexpected divergence of AAVR engagement within these parvoviruses.
منابع مشابه
Analysis of the interaction between adeno-associated virus and heparan sulfate using atomic force microscopy.
Adeno-associated virus (AAV) has been widely used as a viral vector to deliver genes to animal and human tissues in gene therapy studies. Both AAV-2 and AAV-3 use cell surface heparan sulfate (HS), a highly sulfated polysaccharide, as a receptor to establish infections. In this study, we used atomic force microscopy (AFM) to investigate the interaction of HS and AAV. A silicon chip functionaliz...
متن کاملThe role of the adeno-associated virus capsid in gene transfer.
Adeno-associated virus (AAV) is one of the most promising viral gene transfer vectors that has been shown to effect long-term gene expression and disease correction with low toxicity in animal models, and is well tolerated in human clinical trials. The surface of the AAV capsid is an essential component that is involved in cell binding, internalization, and trafficking within the targeted cell....
متن کاملThe 2.8 Å Electron Microscopy Structure of Adeno-Associated Virus-DJ Bound by a Heparinoid Pentasaccharide
Atomic structures of adeno-associated virus (AAV)-DJ, alone and in complex with fondaparinux, have been determined by cryoelectron microscopy at 3 Å resolution. The gene therapy vector, AAV-DJ, is a hybrid of natural serotypes that was previously derived by directed evolution, selecting for hepatocyte entry and resistance to neutralization by human serum. The structure of AAV-DJ differs from th...
متن کاملAdeno-associated virus serotypes: vector toolkit for human gene therapy.
Recombinant adeno-associated viral (AAV) vectors have rapidly advanced to the forefront of gene therapy in the past decade. The exponential progress of AAV-based vectors has been made possible by the isolation of several naturally occurring AAV serotypes and over 100 AAV variants from different animal species. These isolates are ideally suited to development into human gene therapy vectors due ...
متن کاملSynergistic Effect of Expressed miR-128 and Puma protein on Targeted Induction of Tumor Cell Apoptosis
Background: Puma is a highly robust pro-apoptotic protein. The protein becomes activated by p53 ensuing beyond-repair DNA damage. Downregulation of SIRT 1, by miR-128, elevates activated p53 that foment Puma indirectly. Objectives: In the present study, we used two-expression Adeno-Associated Virus (AAV) system for co-expression of miR-128 and Puma in order to evaluate apoptotic response; both ...
متن کامل